

Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM)

REAPower: Use of Desalination Brine for Power Production through Reverse Electrodialysis

M. Papapetrou, W. Van Baak, K. Goeting, A. Cipollina

The REAPower Project

Main facts:

- "Reverse Electrodialysis for Alternative Power production"
- Cooperative project financed through the FP7 programme
- Starting date: 1 October 2010
- Closing date: 30 September 2014

The REAPower Project Consortium

The Reverse Electrodialysis technology

The REAPower Project

Potential Sources of brine

	Concentration of brine (g of salt/litre)	Volume of brine (m ³ /day per plant)	Temperature
RO using brackish water	40 - 100	40,000 - 60,000	Ambient
RO using sea water	50 - 80	60,000 - 80,000	Ambient
Multi-stage flash distillation	40 - 50	60,000 - 70,000	5 - 8°C above ambient
Multi-effect distillation	40 - 50	8,000 - 10,000	5 - 8°C above ambient
Chlor-alkali process: Diluted brine	210 - 250	3,000 - 4,000	60 - 80°C
Glycerin to Epichlorohydrin (GTE) plant	200 - 230	1,500 - 2,000	over 60°C
Textile industry: Dyebath (cotton)	14 - 16	less than 100	60°C
Salt ponds	250 - 300	5,000 - 80,000	20 - 35°C
Oil refining	5 - 10	1,000 - 2,000	115 - 150°C
Metal Pickling	150 - 170	1,500 - 2,500	80 - 100°C
Garabogazköl Aylagy	300		Ambient

The REAPower Project Achievements

We have come a long way

- ✓ Tailor made membranes have been developed
- New stack design with higher performance
- ✓ Sophisticated modelling and process simulation
- ✓ 4 small and one larger lab stacks have been constructed and tested extensively
- Extensive lab testing record power densities achieved and a lot learned about the factors that affect the performance
- Modelling and process simulation validated and improved
- ✓ Starting by a stack of 10x10 cm² with 50 cell pairs we scaled-up by a factor of 200 to a 44x44 cm² stack with 500 cell pairs
- We moved to a real environment and have been operating for over 6 months - without important problems but still learning a lot

The REAPower prototype

First operating prototype in the world

Improvements in membranes development

Reduced membrane resistance

Increased permselectivity

Improvements in membranes development

IEMs areal resistance

Influence of IEMs thickness on resistance of the system.

- Simulation of a 1000 cells stack assuming a linear decreasing of IEMs resistance with IEMs thickness.

 $- \alpha_{AEM} = 0.65, \alpha_{CEM} = 0.90.$

spacer thickness of seawater/brine compartments d = 200 micron.

AEM/CEM thickness [μ m]

Source: A multi-scale model for the Reverse ElectroDialysis process with seawater and concentrated brines by *M*. Tedesco University Palermo

11

Improvements in membranes development

IEMs improved morphology and support

Improvements in membranes development

13

Improvements in membranes development

IEMs permselectivity: analysis of transport mechanisms

Improvements in membranes development

IEMs permselectivity: achievements

Improvements in membranes development

IEMs: Projects achievements

Electrochemical aspects and stack design

The REAPower prototype

Advances in RED technology

- Lab stack: 10x10 cm2 , up to 50 cell pairs
- Large lab stack: 20x20 cm2, 100 cell pairs
- Pre-prototype stack: 22x22 cm2; 109 cells
- First prototype pilot stack: 44x44 cm2, 125 cell pairs
- Final prototype pilot stack: 44x44 cm2, 500 cells

Design goals and challenges

- Leak-free design
- Homogeneous flow distribution
- Minimise parasitic short-cut current losses
- Improving assembly process
- Robust design: Optimising materials and strength

Principles of REDstack's Cross-flow Stack

• Principles of REDstack's Cross-flow Stack

Performance Lab Cross-Flow Stack

The REAPower Prototype

Final result: 44x44 cm² pilot stacks with 500 cells

Laboratory Experimental investigation

Experimental conditions investigated:

- ✓ fluid velocity (0.1 4 cm/s)
- ✓ feed temperature (20 40 °C)
- ✓ concentration of redox couple $(0.1 0.3 \text{ M of } K_3 \text{Fe}(\text{CN})_6 / K_4 \text{Fe}(\text{CN})_6)$
- ✓ salt concentration of dilute solution from 0.1M to 0.55M
- ✓ salt concentration of concentrate solution from 0.5M to 5M

Stack equipped with 50 cell pairs, Fujifilm membranes, Deukum 270 μ m spacers .Brine solution: 5 M NaCl, seawater: 0.5 M NaCl. T=20° C. Electrode rinse solution: 0.1 M K₃Fe(CN)₆ / K₄Fe(CN)₆ ·3H₂O + 2.5 M NaCl.

Effect of the concentration of the concentrated solution (1 ÷ 5 M)

Stack equipped with 50 cell pairs, Fujifilm membranes, Deukum 270 μ m spacers . Seawater: 0.55 M NaCl. T=20° C. Fluid velocity: 1 cm/s. Electrode rinse solution: 0.1 M K₃Fe(CN)₆ / K₄Fe(CN)₆ · 3H₂O + 2.5 M NaCl.

27

Experimental investigation on a lab-scale unit

Effect of the concentration of the diluted solution (0.1 ÷ 1 M)

Maximum power density

Stack equipped with 50 cell pairs, Fujifilm membranes, Deukum 270 μ m spacers . Brine: 5 M NaCl. T=20° C. Fluid velocity: 1 cm/s. Electrode rinse solution: 0.1 M K₃Fe(CN)₆ / K₄Fe(CN)₆ · 3H₂O + 2.5 M NaCl.

Change in membranes: 20-30 μ m thin membranes

50 cell pairs - FAS – 20/FKS – 20 Fumatech membranes [thickness 20-30 μ m] - Deukum spacers [thickness 270 μ m] - Brine 5 M, seawater 0,1÷0,5 M - Electrode rinse solution [(K₃Fe(CN)₆ 0,1 M, K₄Fe(CN)₆ · 3H₂O 0,3M; NaCl 2,5M), flow rate 30l/h].

MAX power output conditions:

4cm/s, T = 40°C & brackish water diluate (0.1M)

Modelling activities and process simulations

Modelling the RED process

The REAPower prototype

CFD Modelling: prediction of pressure drops

CFD Modelling: prediction of polarisation phenomena

CFD Modelling: prediction of polarisation phenomena

Polarization factor for Deukum spacer-filled channels

Example: Effect of current density and fluid velocity on polarization coefficients. Model predictions from CFD simulations with 280 µm polyamide woven spacer (Deukum GmbH, Germany).

Development/validation of a process simulator

Low-hierarchy model (*cell pair*):

Source: M. Tedesco et al., Desalination and Water Treatment, vol. 49, pp. 404-424, 2012

- thermodynamic properties of solutions
- electric variables
- salt transport (counter/co-ions)
- solvent transport (osmosis/electro-osmosis)
- polarization phenomena
- mass balance

Process Modelling Approach

Process Modelling Approach

Process Modelling validation

Model calibration with variable feed concentration

Experimental (points) and simulated (lines) data for a 50-cells stack equipped with Fujifilm membranes, Deukum 270 μ m spacers; feed flow velocity: 1 cm/s; T=20° C. Blank resistance: 0.4 Ω .

Prediction of dependences

Influence of feed T & concentration

Simulations of a 50-cells stack equipped with Fujifilm membranes, Deukum spacers; fluid velocity inside channels: 1 cm/s; T=20° C. Blank resistance: 0.4Ω .

Further model developments

2D model implementation

41

Prototype plant simulations outcomes

Analysed scenarious

Scenario #	Stack size (cm)	N° cell pairs	Notes
1	22 X 22	100	Reference case (small prototype)
2	22 X 22	500	Larger number of cell pairs
3	44 X 44	500	symmetrical stack
4	22 X 88	500	asymmetrical stack, AR = 4
5	44 X 88	500	asymmetrical stack, AR = 2
6	22 x 88	500	asymmetrical stack, different velocity (v _{LOW} = 1 cm/s, v _{HIGH} = 2 cm/s)

Operating conditions:

- HIGH concentration:
- LOW concentration:
- Temperature :
- Fluid velocity:

5 M NaCl

- 0.1 M NaCl
- 30°C
- 1 cm/s (except for scenario # 6)

Prototype plant simulations outcomes

Gross and Net power density (W/m² cell pair)

Simulations of stacks equipped with Fujifilm membranes, 270 μ m woven spacers; C_{LOW} = 0.1 M; C_{HIGH} = 5 M; T=30° C.

43

Prototype plant simulations outcomes

Process yield (kWh/m³ of brine)

Simulations of stacks equipped with Fujifilm membranes, 270 μ m woven spacers; C_{LOW} = 0.1 M; C_{HIGH} = 5 M; T=30° C.

Implementation of the prototype plant simulator

Implementation of the prototype plant simulator

Analysis of plant layouts: stacks arrangement

47

Analysis of plant layouts: simulation results

1800 Stack 3 1800 Stack 2 Stack 3 1600 □ Stack 1 □ Stack 2 1600 □ Stack 1 1400 1400 Land 1200 1000 800 600 1146 W 1126 W ₹1200 1099 W 1111 W 1066 W 1095 W Net Power 800 800 800 291 270 354 279 258 342 433 426 600 869 <u>421</u> 416 359 400 400 200 422 430 376 200 411 421 368 0 0 layout 1 layout 2 layout 3 lavout 1 lavout 2 lavout 3

REAPower final **TARGET**: **1000 W**

Simulations of 3 stacks (500 cells) equipped with Fujifilm membranes 44×44 cm² and 270 μ m woven spacers; C_{HIGH} = 5 M; Q_{HIGH} =29.4 lt/min; make-up of brackish water, Q_{MU} = 40 lt/min, C_{MU} = 0.03 M.

The REAPower prototype: installation, commissioning and testing

Project scheduling and units scaling-up

- <u>lab stack</u> (10x10cm², 50 cell pairs)
- <u>large lab stack</u>
 (20x20 cm² x 100 cell pairs)

- <u>Very small prototype stack</u>
 (22x22 cm², 109 cell pairs)
- <u>Small prototype stack</u> (44x44 cm², 125 cell pairs)
- Large prototype stack (44x44 cm², 500 cell pairs)
- Final prototype system
 (3 large prototype stacks)

Prototype construction, installation and testing

(Sept. 2013 - Sept. 2014)

The REAPower prototype installation site

The singular framework of Trapani saltworks

51

The REAPower prototype installation site

The "Ettore-Infersa" saltworks

Direct access to both saturated brine and seawater from open channels

Installation place within an old, restructured WINDMILL

The REAPower prototype

Prototype installation: plant specifications

Site features

- Availability of both sea & brackish water;
- Brine availability: 10-15 m³/h (larger with feed-recycle);
- Brine concentration: variable between 250 and 320 gr/lt.

Prototype features

- Total cell pair surface: from 5 to more than 200 m² (3 stacks under testing);
- Expected power density: > 3 W/m²;
- Expected power output in real operating conditions: from 500 to 800W

53

Site preparation

Site preparation, piping & auxiliary systems installation (Dec. 2013 – Feb. 2014)

- ✓ About 1 km pipes installed for the three feed solutions intakes
- ✓ 4 m³ tanks adopted for buffering the availability of brackish water
- ✓ Cartridge filters as the only feed solutions pre-treatment
- ✓ Membrane or centrifugal pumps in techno-polymeric materials installed

Prototype test-rig and control system

Prototype commissioning

First stack: 22x22 cm², 109 cell pairs

MARCH 2014

Prototype commissioning

Second stack: 44x44 cm², 125 cell pairs

APRIL 2014

Prototype operations and testing

Second stack: 44x44 cm², 125 cell pairs

Testing with natural and artificial solutions

April 2014 – August 2014

Feed streams	Conductivity [mS/cm]	Flow rate [lt/min]	Temperature [°C]	Power output [W]
Natural or artificial brine	180-230	4-16	25-30	
Natural or artificial brackish water	1-6	4-16	22-25	40-60

Further details on the REAPower prototype activities will be given by Michele Tedesco, today at 15:10

Prototype scaling-up

- small prototype

44 x 44 cm² 125 cell pairs

Almost 220m² of cell pairs installed

System under testing

REAPower workshop and prototype visiting

The REAPower pilot plant:

First installation in the world to generate electricity from brine

30th September 2014 Saline Ettore e Infersa, Marsala (TP)

WORKSHOP

To visit the pilot site, contact us: andrea.cipollina@unipa.it

Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM)

The Future

Thank you for your attention

www.reapower.eu

0000

Process Flow Diagram & recycle option

Thank you for your attention

EuroMed 2015 Desalination for Clean Water and Energy Palermo, Italy, 10-14 May 2015

Andrea Cipollina andrea.cipollina@unipa.it

